Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport.
نویسندگان
چکیده
Kinesin-based cargo transport in cells frequently involves the coordinated activity of multiple motors, including kinesins from different families that move at different speeds. However, compared to the progress at the single-molecule level, mechanisms by which multiple kinesins coordinate their activity during cargo transport are poorly understood. To understand these multimotor coordination mechanisms, defined pairs of kinesin-1 and kinesin-2 motors were assembled on DNA scaffolds and their motility examined in vitro. Although less processive than kinesin-1 at the single-molecule level, addition of kinesin-2 motors more effectively amplified cargo run lengths. By applying the law of total expectation to cargo binding durations in ADP, the kinesin-2 microtubule reattachment rate was shown to be fourfold faster than that of kinesin-1. This difference in microtubule binding rates was also observed in solution by stopped-flow. High-resolution tracking of a gold-nanoparticle-labeled motor with 1 ms and 2 nm precision revealed that kinesin-2 motors detach and rebind to the microtubule much more frequently than does kinesin-1. Finally, compared to cargo transported by two kinesin-1, cargo transported by two kinesin-2 motors more effectively navigated roadblocks on the microtubule track. These results highlight the importance of motor reattachment kinetics during multimotor transport and suggest a coordinated transport model in which kinesin-1 motors step effectively against loads whereas kinesin-2 motors rapidly unbind and rebind to the microtubule. This dynamic tethering by kinesin-2 maintains the cargo near the microtubule and enables effective navigation along crowded microtubules.
منابع مشابه
Force-velocity relations for multiple-molecular-motor transport.
A transition rate model of cargo transport by N molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multimotor system can be derived from the force-velocity curve of a single motor. Our work shows, in the case of low load, that the velocity of multimotor system can decrease or increase with increasing motor number, which is dependent on the single mot...
متن کاملEnhancement of cargo processivity by cooperating molecular motors.
Cellular cargo can be bound to cytoskeletal filaments by one or more active or passive molecular motors. Recent experiments have shown that the presence of auxiliary, nondriving motors results in an enhanced processivity of the cargo, compared to the case of a single active driving motor alone. We model the observed cooperative transport process using a stochastic model that describes the dynam...
متن کاملIntracellular Transport: The Causes for Pauses
Intracellular transport of motor-driven cargo faces the navigational challenges of a dense, intersecting cytoskeleton and obstacles including organelles. A new study investigates why directed early endosome trafficking is so frequently interrupted, and how pauses play a role in cargo sorting.
متن کاملCatch bond mechanism in Dynein motor driven collective transport
Recent experiments have demonstrated that dynein motor exhibits catch bonding behaviour, in which the unbinding rate of a single dynein decreases with increasing force, for a certain range of force. Motivated by these experiments, we propose a model for catch bonding in dynein using a threshold force bond deformation (TFBD) model wherein catch bonding sets in beyond a critical applied load forc...
متن کاملTuning multiple motor travel via single motor velocity.
Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 114 2 شماره
صفحات -
تاریخ انتشار 2018